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Abstract

In this article we are going to review the modelling of NMDs via repli-
cating portfolios due to the revived interest in NMDs in the context of
the interest rate risk of the banking book (IRRBB). The main goal is to
provide a self contained presentation of the replicating portfolio approach
from scratch. It intends to clarify the underlying assumptions and the
methodology of the replicating portfolio approach, i.e. it derives the the-
ory from simple basic principles while collecting all relevant information
in one place. Because using this model is a major methodological decision
we will pay particular attention to the challenges this modelling approach
is exposed to in a low interest environment, which is characterised by a
pronounced regime switch with respect to the interest rates of the eligible
investment products.
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1 Introduction

Non-maturing deposits, i.e. a subclass of products with unde�ned maturity, are
of special importance to commercial banks because they usually contribute a
signi�cant part to the balance sheet on the liability side. These products are
characterised by the following properties:

• The product is a daily callable deposit, characterised by a balance and an
interest rate.

• The balance of the deposit can be increased or decreased by the depositor
at any time without having to pay any compensation to the bank.

• The bank can adjust the interest rate paid to the depositor at any time.

Changes of the product's interest rate are made due to opportunity consider-
ations by the bank in competition with other banks. If the market-wide level
of interest rates changes, interest rate adjustments are not carried out instan-
taneously, but typically with a delay. The level of the interest rate of the NMD
is set with respect to a stable amount of NMDs on the liability side.

The main assumption of the replicating portfolio approach is the existence
of a more or less stable amount of NMDs on the liability side of the balance
sheet whose rate is determined mainly by competition with other banks and
not directly by the current level of market interest rates thus leading to the
aforementioned lagged interest rate adjustment. The existence of this stable
amount is a purely statistical e�ect [1]. Each in�ow of money at a speci�c point
in time does decay stochastically because money is spent earlier or later. Yet,
when considering the superposition of a large number of in- and out�ows of a
large number of debtors, all contributing to the total balance (overall current
balance), then it turns out to be possible to de�ne a certain part of the total
balance that is permanently present with a high level of con�dence. The �uctu-
ations above the stable part form the volatile part, which is the complement of
the stable part with respect to the total balance. The separation into a stable
and a volatile part is a topic of a statistical analysis and not part of the dis-
cussion we are going to unfold here (for more details cf. [2]). Historically the
replication approach was developed to model only the core ('Bodensatz'), i.e.
that fraction of the stable part that is unlikely to reprice even under signi�cant
changes in the interest rate environment. Later it was extended to apply to
the full stable part and to account for occasional changes in the volume of the
stable part, too. For the sake of completeness, a concise introduction into the
topic of NMD modelling was given in [3] and a review of the existing scienti�c
literature can be found e.g. in [4].

The rest of the paper is organized as follows: In Section 2 we consider the
stable part only and describe the general methodology to replicate the stable
part in terms of a portfolio of bonds. Later, in Section 3 we will discuss the
di�erences between the stable part and the core in more detail and argue that
in the prevailing market regime of interest rates the main assumption on the
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modelling approach is violated. Finally, in Section 4 we summarise the main
conclusion for the modelling of NMDs via replicating portfolios that follow from
the existence of two very di�erent market regimes of interest rates.

2 Replicating Portfolio Approach

The replicating portfolio approach is a hypothetical practice of investing NMD
volumes into term deposits (replicating portfolio) according to a predetermined
disposition rule.

Before delving into the details of this approach, we will introduce the concept
of a decay function (or run o� pro�le) as a tool to describe the run o� of the
total NMD volume invested into a replicating portfolio, when one arti�cially
stops (re)investing NMD money into the replicating portfolio (dead portfolio
assumption). In addition we will present a speci�c technique to approximate
the decay function in terms of a convex combination of a set of linear amortising
run o� pro�les1.

For illustration purposes in �gure 1 the run o� of the stable part of the total
volume invested in a replicating portfolio according to a deterministic decay
is displayed. In addition two linear amortising pro�les are displayed that are
chosen to match the 'true' decay function as close as possible. The �rst pro�le
amortises over three months and the second pro�le over ten years. The two
positive attachment points ω3M and ω10Y de�ne a positive set of weights that
add up to 1. These weights can be rescaled with the total invested volume.

Figure 1: Approximation of a decay function via a convex combination of two
linear amortising pro�les.

1Linear amortising run o� pro�les are chosen because the approximation in terms of a
disposition rule of actual trades is possible. As will be shown in Section 2.1, the continuous
reinvestment in bonds of the same maturity preserve the linear amortising run o� pro�le over
time.
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Obviously the approach in this example can be generalised, such that any
reasonable decay function can be approximated by a convex combination of
linear amortising pro�les. In principle the number of convex combinations of
linear functions can be extended by any other linear pro�le, that amortises over
any sensible period of time. In practice the maximal maturities of the linear
amortising pro�les are limited by 10 years, for instance. Let us assume that
k linear amortising pro�les are superposed with k positive attachment points

ωi∈{1,...,k} subject to the condition
∑k

i=1 ωi = 1. Then the convex combination
of the corresponding linear amortising pro�les de�nes the approximation of the
decay function used to describe the run o� of the replicating portfolio connected
with the stable part. One important point to note is that the above idea of
describing the decay of the replicating portfolio connected with the stable part
does not need much more information than the mere balance and its allocation
onto the separate linear amortising pro�les as de�ned by the positive weights
ωi. If we look for any technique, which is used to implement this idea in terms
of a portfolio of tradeable market instruments, the linear amortising pro�les
must be realised in terms of the notionals of these replicating instruments. In
particular, up to now interest rate payments do not play a distinguished role in
the determination of the decay function as a superposition of linear amortising
pro�les2. In principle any type of liquid market instrument with a single notional
repayment at maturity is suitable to do the replication. Examples of possible
alternatives are �xed rate bonds, �oaters and constant maturity bonds (CMB).
For each of these alternatives (synthetic) market prices can be derived (at least
from liquid markets of derivatives). The main di�erences between the di�erent
choices of replicating instruments are the calculation of FTP rates and the
sensitivity structures associated with the replicating instruments3 (see [2, 5]).

We will explain in the next section how the replicating portfolio approach
which is using �xed rate bonds as replicating instruments can be used to realise
an approximated realisation of the ideas described so far.

2.1 Mathematical Basis

The replicating portfolio approach uses e.g. �xed rate bonds to realise linear
amortising pro�les, i.e. the building blocks in modelling the decay function
described before. The idea behind this reformulation of the linear amortising
pro�le in terms of actual market instruments mimics the practice of a treasury
department, that money which is received from a depositor in form of (the
stable part of) an NMD is reinvested at current market rates into e.g. �xed
rate bonds. This is called a disposition rule. The purpose of this section is
therefore to describe the disposition rule, which realises a discretised version of
the approximation of the true decay function of Figure 1 in terms of the convex
combination of linear amortising pro�les.

2In Section 2.2 we will see, that also interest payments may play an indirect role in deter-
mining a decay function.

3The choice of the replicating instrument is mainly driven by the structure of the active
side of the balance sheet.
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In this section we proceed as follows. First, the breakdown of the problem
onto disposition rules that match the elementary linear amortising pro�les is
described. Then the actual disposition rule is formulated as a simple formula.
After having achieved this, it is shown that the same formula can be used to
handle the initialisation of the replicating portfolio as well as the treatment of
the situation, where the total balance increases, decreases, or remains constant.

1. Breakdown to Linear Amortising Pro�les

All considerations start from an overall current balance V (0) := V (t)|t=0.
Due to the positive weights ωi∈{1,...,k}introduced before, it is possible to as-
sign volumes to each element in the set of linear amortising pro�les with ma-
turity Ti∈{1,...,k}. The corresponding pro�le speci�c volumes are de�ned as
Vi(0) = ωi · V (0).

2. The Building Blocks � Realisation of Linear Amortising Pro�les

via Bonds

The �nal prerequisite for the description of the replication algorithm is to link
linear amortisation pro�les to a set of market instruments (�xed rate bonds).
For simplicity we discuss the example of a linear amortisation pro�le with a
maturity of 10 years (such as the representative displayed in Figure 1). A bullet
bond does not possess an amortisation pro�le of the notional itself, thus the
aim of mimicking the linear amortising pro�le is achieved by applying a trick.
The trick can be easily described by thinking in terms of a set of bonds which
all are considered from the same reference date, but their residual maturities{
T

(l)
i

}
l=1...i

grow from a shortest maturity T
(1)
i until the largest maturity T

(i)
i =

Ti (here 10 years) with a regular spacing according to a preselected frequency4.
The preselected frequency is the same frequency at which interest payments
occur in the NMD and thus de�nes also the value of the shortest maturity.

T
(1)
i ≤ T (2)

i ≤ . . . ≤ T (i−1)
i ≤ T (i)

i = Ti

If the pro�le speci�c volume Vi(0) is uniformly distributed over all those
bonds, then an approximated linear amortising pro�le can be retrieved, when
one considers the total notional invested in bonds with a maturity larger than
t, i.e.

Vi(t) = Vi(0) ·
∑

T
(l)
i >t

N
(l)
i /Vi(0) ,

where T
(l)
i is the maturity and N

(l)
i the notional invested in the l-th bond of the

above sequence used to represent the i-th linear amortising pro�le. Obviously

all the N
(l)
i /Vi(0) are equal and sum up to 1. This is displayed in Figure 2.

4These maturities T
(l)
i have to be understood as relative to the periodically moving reference

date.
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Figure 2: Representing a linear amortising pro�le in terms of a disposition rule.

The blue bars indicate the volumes N
(l)
i /Vi(0), while the dashed bars represent

the cumulative sum that is approximating the linear amortising pro�le.

If the disposition rule is applied only to set up the portfolio and nothing else is
done henceforth, then at time zero the total notional is bound in the set of bonds

with the same starting dates and maturities T
(l)
i . At all successive future dates

speci�ed by the repayment frequency equal parts of the initial invested volume
are repaid to the depositor according to the assumption of linear amortization.
This in particular means, that the remaining invested value amortizes linearly
down to zero at Ti.

Traditionally it is said, that the part of the NMD balance Vi(0) is invested
into a �rolling� structure. That means, the part of the volume which is periodi-
cally repaid is instantaneously reinvested into a bond with residual maturity Ti
at current market rate, thus preserving the linear amortizing pro�le [2, 6]. The
current market rate corresponds to the maturity matched market interest rate
(FTP rate) as of the date of investment.

In case a change in volume of Vi(t) at some future point in time t is taken
into account, this additional amount is again equally distributed to a number of

bonds with residual maturities T
(l)
i , thus preserving the pro�le. The investment

occurs at the current market interest rate for the respective maturities. This
will be formalised, now.

3. General formula for the disposition rule

The additional volumes ∆V
(k)
i (t) of replicating bonds with maturity T

(k)
i be-

longing to the representation of a linear amortizing pro�le with maturity Ti,
which must be traded at current market conditions due to the disposition rule
are given by5:

5Please note, that now the weights are made time dependent as well. This should be
understood as a step function, i.e. during a certain period the ωi(t) always stay constant.
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∆V
(k)
i (t) =


V (t)·ωi(t)−V (t−1)·ωi(t−1)

ni
V (t)·ωi(t)

ni

0

if T
(k)
i < Ti

if T
(k)
i = Ti

if T
(k)
i > Ti

(1)

Here ni is a number obtained by dividing the number of months corresponding to
the maturity Ti by the preselected (interest payment) frequency also expressed
in months. In the special but important case of monthly replication, ni turns
out to be simply the number of months until Ti. This formula can be applied
to all cases of importance. Two special situations worth mentioning are:

1. The initialization of the portfolio (V (t− 1) = 0, ωi(t− 1) = 0) and

2. the case where neither volume nor weights change (V (t) = V (t−1), ωi(t) =
ωi(t− 1)).

The second case corresponds to the classical technique of weighted moving av-
erages described in [7].

4. Computing averaged FTP of a replicating portfolio

The interest amount (IA) earned on the replicating portfolio can be obtained by
summing up the interest amounts earned by each of the bonds the replicating
portfolio is made of. Each bond is equipped with a coupon equal to the FTP
rate as computed on the day of its inception6. Thus, the interest amount of the
l-th bond belonging to the i-th linear amortizing pro�le and originally traded at

time th is computed as IA
(l)
i (th) = ∆V

(l)
i (th) · FTP (l)

i (th) · τ . Here FTP (l)
i (th)

denotes the FTP rate of the l-th bond belonging to the i-th linear amortizing
pro�le and originally traded at time th and τ is the length of the accrual period at
which payments occur. Then an averaged FTP rate of the replicating portfolio
reads:

FTP =

∑
h

∑
i

∑i
l=1 IA

(l)
i (th)

V (t) · τ
. (2)

The computation of a margin requires the comparison of interest earned on
the NMD with interest earned on the replicating portfolio. Thus the margin
spread of a NMD can be de�ned as the di�erence between the interest rate
associated with the NMD and the averaged FTP de�ned above.

6The FTP rate is the term rate, only.
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2.2 Choosing the Pro�le

After having described the methodology to model NMDs with the replicating
portfolio approach, there is still one question left open: Which decay function
(run o� pro�le) should be chosen to re�ect the behaviour of a particular type
of NMD correctly? Answers to that question point at least into two di�erent
directions.

1. First, one could argue that a run o� pro�le must be given by some sort
of expert judgment. In this view, the pro�le is nothing else than a tool
to encode the opinion of e.g. the treasury department on the drawing be-
haviour of NMD volumes in the future. This corresponds to an assumption
on the e�ective 'capital commitment'.

2. Second, one could make the point that the decay function should explain
the dynamics of the lagged adjustment of the NMD rate as close as pos-
sible. In order to implement this view one has to rely on historically
observable data and one has to make the additional assumption that the
run o� pro�le possesses a time translation invariance (up to a rescaling
due to a changed overall balance). It is this assumption that it most often
made in practice.

Both approaches have their pros and cons and work best for the core. As soon
as a strong interest rate dependence of NMD volumes comes into play neither
of the two approaches have a sound theoretical basis. Therefore, independent
of the �nal approach taken, a regular validation of the model assumptions must
be carried out that the risk of a hidden model defect can be controlled appro-
priately.

Direction 2: Calibration based on historical data:

In order to identify plausible disposition rules for a speci�c type of NMDs,
one can use an optimization algorithm based on historical data that comprise
product volumes, product interest rates and market interest rates [8, 9]. It is
important to understand that the application of such an algorithm produces
only a self-consistent result, i.e. during the optimization that decay function is
determined by the algorithm, which is most consistent with the historical data
in the sense of the chosen target function. The quality of the estimated decay
function must be regularly supervised by backtesting the model predictions.

The two most common target functions7 used in practice are [11]

1. the lowest variance of the modelled margin and

2. the highest modelled margin at the lowest risk. The risk is measured in
terms of the standard deviation of the margin.

7A good introductory account into the background of the meaning of the two listed target
functions can be found in [10].
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The outcomes of the optimization algorithm is the set of positive weights,
ωi∈{1,...,k}, for the linear amortizing pro�les realised in terms of �xed rate bonds.
These in turn determine the cash �ow structure of the replicating portfolio.

3 Discussions of Market Regimes

In this section we are going to discuss the applicability of the replicating portfolio
approach in di�erent market regimes. While the approach was developed under
�normal� market conditions it has to cope with an expressed low interest rate
environment, nowadays. In order to explain the challenge the approach is facing,
consider an economy consisting of two segments - banks and individuals - only
[12]. Furthermore, suppose there are only two types of products traded in that
economy:

1. Standardised term deposits (TD) with di�erent tenors τi

(a) Banks can both buy and sell TDs.

(b) Individuals can only buy TDs (i.e. we disregard the possibility of
banks symmetrically trading money with individuals).

2. Non-maturing deposits (NMD) (aka sight deposits)

(a) Banks only sell NMDs to individuals, not to other banks.

(b) Individuals can only buy NMDs.

The two segments can thus be characterised as follows:

• Banks that have full access to the 'capital market' but in addition fund
themselves by selling NMDs to individuals, too

• Individuals possessing a limited amount of cash D(t) that they can invest
either in TDs or NMDs

Denote the current interest rate for a TD with tenor τi as r(t, τi). In particular,
the O/N rate for a TD with tenor 1 day is denoted as r(t, 1d) := r(t). The
current interest rate on NMDs is denoted as i(t).

The part of the total amount of cash D(t) available to individuals that is
invested in NMDs is denoted as DNMD(t) while the parts invested in TDs of
tenor τi is denoted as Di(t). We assume that

D(t) = DNMD(t) +
∑
i

Di(t),

i.e. all the cash of individuals is always invested in either NMDs or TDs. The
capital invested in NMDs can be split into three parts, i.e. DNMD(t) = DV (t)+
DC +DI(t), which are described below:
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• A time-dependent volatile part DV (t) and a time-independent core part
DC > 0 with D(t) > DV (t) +DC > 0: All individuals constantly deposit
and withdraw cash (salaries vs. payments). The volume of cash in NMD
accounts due to this process is not related to market prices as changes are
not driven by investment decisions, i.e. the crucial characteristic of DV (t)
and DC is that they are entirely independent of r(t) and i(t).

• A time-dependent investment contribution DI(t): This is all the excess
cash of individuals invested in NMDs that is not needed for ensuring day-
to-day liquidity.

How this split is actually performed will not be discussed here.
Note that in the proposed economy we usually do not observe r(t) = i(t)

(even though O/N deposits and NMDs are technically very similar instruments).
Instead one �nds two major regimes:

• �normal� market environment, i.e. i(t) < r(t) is an incentive for indi-
viduals to invest in short-term TDs rather than NMDs and one expects
DI(t) ≈ 0. To what extent r(t) can then be larger than i(t) depends on
the nature of competition for NMDs across banks.

• low interest environment: i(t) > r(t) is clearly an incentive for individuals
to invest cash in NMDs rather than short-term TDs. Thus one expects
DI(t) > 0. The reason for the existence of this regime is, that the corre-
sponding arbitrage opportunity cannot be exploited neither by individuals
(as they cannot short TDs) nor by banks (as they cannot buy NMDs).

The replicating portfolio approach is a popular choice for producing an inde-
pendent forecast for the development of i(t) in the future. By representing the
core part of the NMD balance as an amortising portfolio of TDs, one e�ectively
assumes a delayed response of i(t) to shifts of the yield curve. The challenge of
this approach is that it relies entirely on the correct identi�cation of the core
part DC of the total NMD balance DNMD(t). Again, we can distinguish the
following situations:

1. �normal� market environment, i.e. i(t) < r(t) is always guaranteed: the
investment contribution DI(t) to the NMD balance can safely be assumed
to vanish and DNMD(t) is basically independent of market movements. A
replicating portfolio approach that simply tries to identify a �uctuating
volatile part (replicated in ON TDs) and replicates the stable and presum-
ably roughly constant rest of the balance as long-term TDs is a sensible
approach (there is still the problem that competition for NMDs between
di�erent banks can lead to changes in i(t) inconsistent with the replication
approach chosen by a particular bank).

2. low interest environment, i.e. i(t) & r(t) occurs: the investment volume
DI(t) is expected to be signi�cantly non-zero and depends on market
movements. It usually contributes to the stable part, but the identi�cation
of the core part requires far more care.
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Note that while the �rst scenario is the historically observed case, which led
to the development of the replicating portfolio approach in the �rst place the
second scenario is the currently prevailing one (cf. �gure 3).

In scenario 2, signi�cant care needs to be taken in order to distinguish the
additional investment part DI(t) from the core part of the NMD balance (cf.
also [13]). Even though, depending on the market environment, DI(t) can have
a slowly varying form much like the core part, one should be at least cautious
to replicate it in the same long-term TDs. This is so as the investment does
not have the same structural long-term character as the core part. As soon as
i(t) & r(t) does not hold anymore, the investment part might be withdrawn and
reinvested in TDs. A simple consistent prescription for a replication approach
would be to replicate DI(t) in O/N deposits just like the volatile part DV (t) .
This is actually the proposal of [14].

Figure 3: Illustration of the regime change based on Bundesbank statistics.
The volume history of daily callable sight deposits of private customers is
taken from BBK01.SUD201 and the corresponding rate history is taken from
BBK01.SUD101. The data before 2003 are completed using the data from
BBK01.SUD101S and BBK01.CEFN0J.

4 Summary

The discussion on the behaviour of NMDs in di�erent market regimes has re-
vealed that in the current low interest rate environment the applicability of the
replicating portfolio approach requires special care. The reason is simply the
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violation of one of its central assumptions: After 2007 the stable part started
to di�er signi�cantly from the core part and has become more and more inter-
est rate sensitive. This e�ect is a consequence of the shift in the interest rate
regimes, where any reasonable market rate �nally ended up to earn less interest
than a NMD. As a consequence the nature of the NMD products has changed
profoundly. They have become investment opportunities and their interest rate
becomes strongly dependent on the level of benchmark market rates. This is
actually opposite to the assumptions made on NMDs in the introduction. Thus
even a signi�cant fraction of the stable NMD volume displays a sensitivity pro-
�le similar to the volatile part8. BCBS368 has identi�ed that problem as well
but only formulates caps on the maximal fraction of the core within the stable
part. All non-core parts shall be treated as O/N deposits.

Nevertheless, a naive replication of the full stable part might lead to a false
estimation of the real interest rate risk9.

Furthermore, the modelling of NMDs enters the estimation of periodic PnL
in NII simulations. Here the behavioural pattern of the run o� pro�le must be
adequately taken into account to produce reliable estimates. In practice this
means that also a migration of NMDs into other investment types like term
deposits should be taken into account.
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