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Abstract

This article reviews score functions, important methodological building blocks
of rating models. By emphasising the relationship to a Bayesian classi�cation
problem, di�erent approaches to determine a score function are related to each
other. This makes it possible to generate estimators for the score function with
purely geometric means on a possibly expanded data basis, which in turn can
also be used for the validation of a rating model.
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1. Introduction

For the purpose of this article, a rating model (R) is a mapping that based on
a tuple of d observable characteristics, x, assigns to a borrower for a given time
horizon (e.g. 1 year) a probability of default, PD(x) ∈ [0, 1]:

R [Borrower] : Rd 7→ [0, 1]. (1)

This mapping belongs to a Bayesian classi�cation problem, i.e. the assignment
of a borrower to one of two groups g ∈ {I, II}. Group I represents the set of
defaulted borrowers and group II the set of non-defaulted borrowers.

If the characteristics, x, assigned to a borrower are realisations of a vector of
continuous random variables, X, and if the group indicator, g, is a realisation of
a discrete random number, G, with the possible values {I, II} then the group
assignment is done according to the following rule:

g(x) = argmax
g∈{I,II}

P(G = g |X = x). (2)

The general practice in credit risk is to use score functions to actually perform
the classi�cation. Therefore, the following methodological question arises: What
is the relationship between a score function and this classi�cation rule?

In the following two cases must be distinguished. Either the classi�cation
according to eq.(2) can be done by analytic means or it requires the application
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of a regression procedure.

Case A: In a convenient situation, where the conditional densities of the char-
acteristics x, given that the observations belong to the group g, ρX(x|G = g),
are multivariate normal densities and the prior probabilities of default of the
groups, {πk}k=I,II , are known, the probability of belonging to the group G = g
given X = x is calculated from eq.(A.1) and eq.(A.2) in the appendix and reads

P(G = g|X = x) = e−d̃2
g(x)/2∑

i

e−d̃2
i (x)/2

.

The distance d̃2g(x) is de�ned in eq.(A.3). A maximum probability corresponds
to a minimum distance. The classi�cation can then also be done via a score
function. In the binary case, the score function takes the following form:

Score(x) =
1

2

(
d̃2II(x)− d̃2I(x)

)
. (3)

According to the above de�nitions, a score greater than zero leads to an assign-
ment of a borrower to group I and a score less than zero leads to an assignment
of a borrower to group II. The decision boundary is de�ned by the set of points
ξ for which the new distances are identical:

d̃2I(ξ) = d̃2II(ξ).

The decision boundary turns out to be a plane if the two modi�ed Mahalanobis
distances in the score of eq.(3) are employing the same covariance matrices
(ΣI = ΣII). In this particular situation, the coe�cients of the characteristics in
the score function determine the normal direction of the decision boundary. The
absolute position of the decision boundary along the axis, given by the normal
direction of the decision boundary, is determined by the prior probabilities, i.e.
the PD-pro�le.

Case B: In the situation, where either the conditional densities of the char-
acteristics x, given that the observations belong to the group g, or the prior
probabilities of default of the groups are unknown1, the decision according to
eq.(2) is done as follows: For the problem with 2 groups, we use

P(G = g|X = x) = E [1g|X = x].

The transformation of the conditional probability into a conditional expected
value allows the use of regression methods, where the regression function is in
turn associated with a linear score. This regression model can be calibrated to

1The under-determined nature of the prior probabilities of the reference group of borrowers
follows from the fact, that the PD-pro�le of a bank portfolio will usually not correspond to
the PD-pro�le of the whole population (e.g. due to a special business strategy of the bank).
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data speci�c for a given bank. In the binary case, the regression can be carried
out, for example, with the help of a logit model (cf. section Appendix A.3):

P(G = I |X = x) =
1

1 + exp[−(a+ ⟨ b, x ⟩) ]
.

Here the constant a and the constant vector b are the parameters of a multi-
linear regression function.

2. Application

We do heuristics. For this purpose we stay within the framework of a binary
model. We assume that the default-weighted and group-speci�c distributions
of the characteristics follow the same multivariate normal distributions as if
no conditioning on the default event were performed. This is by no means
implausible, since a classi�cation into good and bad borrowers (e.g. based on
an expert judgement) should more or less correspond to a classi�cation with
respect to a default �ag. Otherwise, the expert was not well chosen.

Then, in principle, the score function of a logistic regression model can be
constructed almost completely geometrically. If one assumes for the sake of
simplicity that the covariances of the two groups match, one proceeds as follows:
One starts with the calculation of the parameters of the multivariate normal
distribution of the ensemble of characteristics x. This results in a geometric
score according to eq.(3), which is initially calibrated to arbitrarily chosen prior
probabilities, πi, (blue dashed line on the left hand side of Fig.1). However, if
one is interested in the mapping R of eq.(1) for a speci�c bank, the very same
score has to be corrected for the bank-speci�c prior default probabilities, PDi,
(red dashed line on the left hand side of Fig.1). Here, the two score functions
di�er only by constants that are related to speci�c choices of prior probabilities.
The other parameters are already geometrically determined and represent in the
given situation the normal direction of the plane, which is the decision boundary.

Figure 1: Geometric estimation of the score function of a rating model (Left: schematic sketch,
Right: stylised example)

The right hand side of Fig.1 displays the results of a stylised example, where
the score function is estimated once by the geometric approach and once by a
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numerical implementation of the linear discriminant analysis (LDA). The sam-
ple consists of 60 observations of �ve characteristics and a default �ag. The
in-sample priors of belonging to the groups of defaulted and non-defaulted ob-
servations are 50% each. Apart from a normalisation of the scale, the two
scores essentially agree on the normal direction of the decision boundary. Any
di�erences between the two scores are due to numerical issues caused by sparse
number of observations.

3. Summary

This article described a hands on approach to the validation of a rating model.
The added value is the e�ective construction of a geometric and functionally
transparent score function (proxy) that can be used to assess the quality of the
outcome of a regression model. If necessary, the geometric score function can be
constructed using an expanded data basis. The essential parts of the geometric
score, that correspond to the normal direction of the decision boundary, can
then be calculated by circumventing the explicit knowledge of default events.
The result is suitably adjusted to a given pro�le of default probabilities.

The geometric score is only an estimator for the regression function. From
a theoretical point of view, this has at least two reasons: The �rst reason is the
speci�c choice of a maximum likelihood function, which is needed to determine
the regression model. A second reason is the possible uncertainty about the
prior probabilities.

The validation of of a regression model as proposed here covers at least two
important use cases: First, the frequently asked question of whether the relative
weights of the characteristics within a score function are plausible can be an-
swered by geometric means. Second, stability analyses for a rating model can be
carried out with the same methodology. By comparing the geometric decision
boundaries on the basis of bank-speci�c data and on the basis of (exogenous)
data, that represent the entire population, bank-speci�c properties (e.g. weak-
nesses) of a rating model can be systematically identi�ed and assessed.

Acknowledgments: The author would like to thank Tilman Wol�-Siemssen
and another unnamed person for useful comments on earlier versions of this
article. All remaining errors are the author's responsibility.

Appendix A. Formulas

Appendix A.1. Bayesian Identity

We assume that the characteristics, x, assigned to a borrower are realisations
of a vector of continuous random variables, X, and the group indicator, g, is a
realisation of a discrete random number, G, with possible values {I, II}.

Let P(G = g) = πg be the probability that a randomly selected observation
belongs to the group g, and ρX(x|G = g) be the conditional probability density
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function of the random vector X, given that the observation belongs to the
group g.

We are interested in the conditional probability, P(G = g|X = x), that an
observation is from the group g, given the observed values x of the random
vector X. Using the usual notation of Bayes' rule,

P(B|A) = P(A and B)/P(A),

where event A is the observation of characteristics x and event B is the ob-
servation of membership of group g, the conditional probability sought can be
formally calculated as follows:

P(G = g|X = x) =
P(X = x and G = g)

P(X = x)
.

The numerator of the above expression is the probability weight that a randomly
selected observation both has the characteristics x and is from the group g. This
is ρX(x|G = g) · πg. The denominator is the unconditional probability weight
that a randomly selected observation has the characteristics x across all groups.
This is

P(X = x) =
∑

i ρX(x|G = i) · πi.

By composing and rearranging the above formulae yields the identity

P(G = g|X = x) =
ρX(x|G = g) · πg∑
i ρX(x|G = i) · πi

. (A.1)

Appendix A.2. Modi�ed Mahalanobis Distance

If fX(x;µi,Σi) denotes for a vector of multivariate normally distributed
random numbers, X, the density of the d-dimensional normal distribution with
mean µi and covariance Σi and πi the prior probability of belonging to the group
i, then

fX(x;µi,Σi) · πi =
1

(2π)
d/2

e−d̃2
i (x)/2 (A.2)

with

d̃2i (x) = (x− µi)
T · Σ−1

i · (x− µi) + log detΣi − 2 log πi. (A.3)

Appendix A.3. Logistic Function

For the analytically tractable case A in section 1, the score function can be
represented as a quotient of conditional probabilities. In the binary case, for
example, the well-known log-odds read:

log
P(G = I |X = x)

P(G = II|X = x)
= Score(x). (A.4)

A little algebra then leads to a logit type representation:
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P(G = I |X = x) =
1

1 + exp[−Score(x) ]

For the case of linear scores, this is the logistic function.
The more general case B from section 1 can also rely on this ansatz. However,

in this situation the explicit assumption of 'linear log-odds' must be made, i.e.
the score analogous to the score in eq.(A.4) is assumed to be a linear function.


